Dynamic Threshold Selection for the Classification of Large Water Bodies within Landsat-8 OLI Water Index Images

crossref(2016)

引用 0|浏览0
暂无评分
摘要
Surface water distribution extracted from remote sensing data has been used in water resource assessment, coastal management, and environmental change studies. Traditional manual methods for extracting water bodies cannot satisfy the requirements for mass processing of remote sensing data; therefore, accurate automated extraction of such water bodies has remained a challenge. The histogram bimodal method (HBM) is a frequently used objective tool for threshold selection in image segmentation. The threshold is determined by seeking twin peaks, and the valley values between them; however, automatically calculating the threshold is difficult because complex surfaces and image noise which lead to not perfect twin peaks (single or multiple peaks). We developed an operational automated water extraction method, the modified histogram bimodal method (MHBM). The MHBM defines the threshold range of water extraction through mass static data; therefore, it does not require the identification of twin histogram peaks. It then seeks the minimum values in the threshold range to achieve automated threshold. We calibrated the MHBM for many lakes in China using Landsat 8 Operational Land Imager (OLI) images, for which the relative error (RE) and squared correlation coefficient (R2) for threshold accuracy were found to be 2.1% and 0.96, respectively. The RE and root-mean-square error (RMSE) for the area accuracy of MHBM were 0.59% and 7.4 km2. The results show that the MHBM could easily be applied to mass time-series remote sensing data to calculate water thresholds within water index images and successfully extract the spatial distribution of large water bodies automatically.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要