Quantum range-migration-algorithm for synthetic aperture radar applications

Scientific reports(2023)

引用 0|浏览1
暂无评分
摘要
The 3D range-migration algorithm (RMA) and its 2D equivalent, the omega-k algorithm, are employed in a wide range of applications where reconstruction of synthetic aperture data is required, from satellite radar imaging of planets over seismic imaging of the earth crust, down to phased-array ultrasound and ultrasonic application, and recently in-line synthetic aperture radar for non-destructive testing. These algorithms are based on Fourier transforms and share their time-complexity. This limits highly-resolved measurement data to be processed at high speeds which would be advantageous for modern production feed lines. In this publication, we present the development and implementation of the RMA on a quantum computer that scales favourably compared to the time complexity of the classical RMA. We compare reconstruction results of simulated and measured data of the classical and quantum RMA. Hereby, the quantum RMA is run on a quantum simulator backend as well as on IBM’s Q System One quantum computer. The results show that real world applications and testing tasks may benefit from future quantum computers.
更多
查看译文
关键词
Engineering,Quantum simulation,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要