Divergent repartitioning of antimony and arsenic during jarosite transformation: A comparative study under aerobic and anaerobic conditions

The Science of the total environment(2023)

引用 0|浏览8
暂无评分
摘要
Jarosite is the host mineral of Sb(V) and As(V) in mining environments. However, the repartitioning of Sb and As during its transformation is poorly understood. Additionally, the mutual effect between the redistribution behavior of As and Sb during jarosite conversion remains unclear. Here, we investigated the transformation of Sb (V)-, As(V)- and Sb(V)-As(V)-jarosite at pH 5.5 under aerobic and anaerobic conditions without a reductant. The results indicated that co-precipitated Sb(V) promotes jarosite dissolution, and the final products were mainly goethite and hematite. In contrast, the co-precipitated As(V) retarded jarosite dissolution and altered the transformation pathway, mainly forming lepidocrocite, which might be attributed to the formation of As-Fe complexes on the jarosite surface. The inhibiting or promoting effect increased with the increase in coprecipitated As or Sb concentration. In the treatment with Sb(V)-As(V)-jarosite, the inhibition effect of coprecipitated As(V) on mineral dissolution was predominant, but the end-products were mainly goethite and hematite. Compared with the aerobic system, the dissolution and transformation of jarosite in treatments in the anaerobic system occurred faster, although without a reductant, which was possibly associated with the reduced CO2 content in the reaction solutions after degassing. In all treatments, the release of Sb(aq) and As(aq) into the solution was negligible during jarosite transformation. The transformation processes drove As into the surfacebound exchangeable and poorly crystalline phases, while Sb was typically redistributed in the poorly crystalline phase. During the transformation of Sb(V)-As(V)-jarosite, the co-existence of As significantly increased the proportion of Sb distributed on the solid surface and in the poorly crystalline phase. These findings are valuable for predicting the long-term fate of Sb and As in mining environments.
更多
查看译文
关键词
Antimonate,Arsenate,Secondary minerals,Redistribution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要