Chitosan-encapsulated nickel oxide, tin dioxide, and farnesol nanoparticles: Antimicrobial and anticancer properties in breast cancer cells.

International journal of biological macromolecules(2023)

引用 0|浏览7
暂无评分
摘要
Breast cancer is the most frequent cancer in women; however, it is curable in most cases (up to 80 %) when detected and treated at an early non-metastatic stage. Nanotechnology has led to the development of potential chemotherapeutic techniques, particularly for tumor treatment. Nanotechnology has therapeutic and pharmaceutical applications. Chitosan, a natural polymer derived from chitin, has been extensively studied for its potential applications in a wide range of fields. This includes medicine for its anticancer properties. In the present study, Chitosan-encapsulated-NiO-TiO2-Farnesol hybrid nanomaterials (CNTF HNMs) were synthesized and characterized using several techniques, including electron microscopy (TEM, FE-SEM), spectroscopy (UV-visible [UV-Vis], Fourier Transform Infrared [FT-IR] spectroscopy, and photoluminescence [PL]), energy-dispersive X-ray spectroscopy (EDX) composition analysis, X-ray diffraction, and dynamic light scattering (DLS) analyses. With an estimated average crystallite size of 34.8 nm, the face-cantered cubic crystalline structure of the CNTF HNMs is identified. Cell viability assay by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), DAPI (4',6-diamidino-2-phenylindole) staining, dual AO/EtBr (Acridine Orange/ Ethidium bromide), JC-1 (5,5,6,6'-tetrachloro-1,1',3,3' tetraethylbenzimi-dazoylcarbocyanine iodide), DCFH-DA (Dichloro-dihydro-fluorescein diacetate), Annexin V-FITC (Fluorescein isothiocyanate) /PI (Propidium Iodide), and cell cycle study was used to assess the ability of nanoparticles (NPs) to kill MDA-MB-231 cells. The CNTF HNMs had high antibacterial effectiveness against multi-drug resistant extended-spectrum beta-lactamases (ESBL)-producing gram-negative bacterial pathogens and reference strains. The findings suggest that NPs increased the number of reactive oxygen species (ROS), changed the Δψm, and initiated apoptosis. There is enormous potential for CNTF HNMs as both antibacterial and anticancer agents.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要