Inkjet printing on hydrophobic surfaces: Controlled pattern formation using sequential drying

The Journal of chemical physics(2023)

引用 1|浏览5
暂无评分
摘要
Inkjet-printed micro-patterns on hydrophobic surfaces have promising applications in the fabrication of microscale devices such as organic thin-film transistors. The low wettability of the surface prevents the inkjet-printed droplets from spreading, connecting to each other, and forming a pattern. Consequently, it is challenging to form micro-patterns on surfaces with low wettability. Here, we propose a sequential printing and drying method to form micro-patterns and control their shape. The first set of droplets is inkjet-printed at a certain spacing and dried. The second set of droplets is printed between these dry anchors on the surface with low wettability. As a result, a stable bridge on the surface with low wettability forms. This printing method is extended to more complicated shapes such as triangles. By implementing an energy minimization technique, a simple model was devised to predict the shape of the inkjet-printed micro-patterns while confirming that their equilibrium shape is mainly governed by surface tension forces. The gradient descent method was utilized with parametric boundaries to emulate droplet pinning and wettability of the anchors and to prevent convergence issues from occurring in the simulations. Finally, the energy minimization based simulations were used to predict the required ink to produce dry lines and triangles with smooth edges.
更多
查看译文
关键词
hydrophobic surfaces,printing,pattern formation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要