Assessment of Ocular Deformation in Pathologic Myopia Using 3-Dimensional Magnetic Resonance Imaging

JAMA ophthalmology(2023)

引用 1|浏览9
暂无评分
摘要
IMPORTANCE Ocular deformation in pathologicmyopia can affect the entire globe. However, few studies have investigated the equatorial pattern of ocular shape. In addition, the correlation between equatorial and posterior morphology needs to be further explored. OBJECTIVE To assess global ocular deformation in pathologicmyopia. DESIGN, SETTING, AND PARTICIPANTS This hospital-based, cross-sectional study included 180 pathologicmyopic eyes with atrophic maculopathy grading C2 (diffuse chorioretinal atrophy) or more from 180 participants who underwent comprehensive ophthalmic examination, including high-resolution 3-dimensional magnetic resonance imaging. In addition, 10 nonpathologicmyopic eyes of 10 participants were set as the control group. MAIN OUTCOMES AND MEASURES According to the cross-sectional view of equator, equatorial shape was classified as round, rectangular, pyriform (noncircular and more protruded in 1 direction), vertical-elliptical, or horizontal-elliptical; according to the nasal and inferior views, the posterior shape was categorized as spheroidal, conical, bulb-shaped, ellipsoidal, multidistorted, and barrel-shaped. Equatorial circularity and ocular sphericity were used to quantitatively assess the morphological variability of the equatorial and posterior regions, respectively. The association between ocular morphology and ocular parameters andmyopic maculopathy was also investigated. RESULTS The mean (SD) age of 180 participants with pathologicmyopia was 55.14 (10.74) years, 127 were female (70.6%), and the mean (SD) axial length of studied eyes was 30.22 (2.25) mm. The predominant equatorial shape was pyriform (66 eyes [36.7%]), followed by round (45 eyes [25.0%]). The predominant posterior shape was bulb-shaped (97 eyes [52.2%]), followed by multidistorted (46 eyes [24.7%]). Equatorial circularity and equatorial shapes were correlated (r = -0.469; 95% CI, -0.584 to -0.346; P <.001) and ocular sphericity was correlated with posterior shapes (r = -0.533; 95% CI, -0.627 to -0.427; P <.001). In eyes with a vertical-elliptical equator, equatorial circularity and ocular sphericity were positively linearly correlated (R2 = 0.246; 95% CI, 0.050-0.496; P =.002) and the prevalence of inferior staphyloma was higher (27.8%; P =.04). Eyes with a horizontalelliptical equator have the most horizontally oriented axis of corneal flat keratometry (median, 43.55 [interquartile range, 43.84] degrees; P =.01) and tended to present with multidistorted posterior shape (21.7%; P =.04). CONCLUSIONS AND RELEVANCE These findings suggest ocular deformation is common in pathologicmyopia and can affect the entire eye, including the equatorial and posterior regions. The morphological classification may enhance the understanding of the diverse patterns of ocular shape in pathologicmyopia.
更多
查看译文
关键词
pathologic myopia,ocular deformation,magnetic resonance imaging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要