Reward Selection with Noisy Observations

CoRR(2023)

引用 0|浏览18
暂无评分
摘要
We study a fundamental problem in optimization under uncertainty. There are $n$ boxes; each box $i$ contains a hidden reward $x_i$. Rewards are drawn i.i.d. from an unknown distribution $\mathcal{D}$. For each box $i$, we see $y_i$, an unbiased estimate of its reward, which is drawn from a Normal distribution with known standard deviation $\sigma_i$ (and an unknown mean $x_i$). Our task is to select a single box, with the goal of maximizing our reward. This problem captures a wide range of applications, e.g. ad auctions, where the hidden reward is the click-through rate of an ad. Previous work in this model [BKMR12] proves that the naive policy, which selects the box with the largest estimate $y_i$, is suboptimal, and suggests a linear policy, which selects the box $i$ with the largest $y_i - c \cdot \sigma_i$, for some $c > 0$. However, no formal guarantees are given about the performance of either policy (e.g., whether their expected reward is within some factor of the optimal policy's reward). In this work, we prove that both the naive policy and the linear policy are arbitrarily bad compared to the optimal policy, even when $\mathcal{D}$ is well-behaved, e.g. has monotone hazard rate (MHR), and even under a "small tail" condition, which requires that not too many boxes have arbitrarily large noise. On the flip side, we propose a simple threshold policy that gives a constant approximation to the reward of a prophet (who knows the realized values $x_1, \dots, x_n$) under the same "small tail" condition. We prove that when this condition is not satisfied, even an optimal clairvoyant policy (that knows $\mathcal{D}$) cannot get a constant approximation to the prophet, even for MHR distributions, implying that our threshold policy is optimal against the prophet benchmark, up to constants.
更多
查看译文
关键词
selection,observations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要