The inhibitory effect and mechanism of theaflavins on fluoride transport and uptake in HIEC-6 cell model.

Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association(2023)

引用 0|浏览4
暂无评分
摘要
Fluoride (F-) is widely present in nature, while long-term excessive F- intake can lead to fluorosis. Theaflavins are an important bioactive ingredient of black and dark tea, and black and dark tea water extracts showed a significantly lower F- bioavailability than NaF solutions in previous studies. In this study, the effect and mechanism of four theaflavins (theaflavin, theaflavin-3-gallate, theaflavin-3'-gallate, theaflavin-3,3'-digallate) on F- bioavailability were investigated using normal human small intestinal epithelial cells (HIEC-6) as a model. The results showed that theaflavins could inhibit the absorptive (apical - basolateral) transport of F- while promote its secretory (basolateral - apical) transport in HIEC-6 cell monolayers in a time- and concentration-dependent (5-100 μg/mL) manner, and significantly reduce the cellular F- uptake. Moreover, the HIEC-6 cells treated with theaflavins showed a reduction in cell membrane fluidity and cell surface microvilli. Transcriptome, qRT-PCR and Western blot analysis revealed that theaflavin-3-gallate (TF3G) addition could significantly enhance the mRNA and protein expression levels of tight junction-related genes in HIEC-6 cells, such as claudin-1, occludin and zonula occludens-1 (ZO-1). Overall, theaflavins may reduce F- absorptive transport by regulating tight junction-related proteins, and decreasing intracellular F- accumulation by affecting the cell membrane structure and properties in HIEC-6 cells.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要