An RNA/DNA-Based Flow Cytometry Approach for Isolating Slow-Cycling Stem Cells.

Methods in molecular biology (Clifton, N.J.)(2023)

引用 0|浏览0
暂无评分
摘要
Flow cytometry methods for sorting specific populations of cells based on fluorescence or physical properties have been a widely used technique for decades. Flow cytometry has been particularly vital to the study of planarians, which remain refractory to transgenic transformation, as it has provided a work-around solution for studying stem cell biology and lineage relationships in the context of regeneration. Many flow cytometry applications have been published in planarians, beginning with broad Hoechst-based strategies for isolating cycling stem cells and progressing to more function-based approaches involving vital dyes and surface antibodies. In this protocol, we look to build on the classic DNA-labeling Hoechst staining strategy by adding pyronin Y staining to label RNA. While Hoechst labeling alone allows for the isolation of stem cells in the S/G2/M phases of the cell cycle, heterogeneity within the population of stem cells with 2 C DNA content is not resolved. By considering RNA levels, this protocol can further divide this population of stem cells into two groups: G1 stem cells with relatively high RNA content and a slow-cycling population with low RNA content, which we call RNAlow stem cells. In addition, we provide instruction for combining this RNA/DNA flow cytometry protocol with EdU labeling experiments and describe an optional step for incorporating immunostaining prior to cell sorting (in this case with the pluripotency marker TSPAN-1). This protocol adds a new staining strategy and examples of combinatorial flow cytometry approaches to the repertoire of flow cytometry techniques for studying planarian stem cells.
更多
查看译文
关键词
flow cytometry approach,stem cells,rna/dna-based,slow-cycling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要