Neuronal wiring diagram of an adult brain.

Sven Dorkenwald,Arie Matsliah, Amy R Sterling, Philipp Schlegel, Szi-Chieh Yu,Claire E McKellar, Albert Lin,Marta Costa, Katharina Eichler, Yijie Yin, Will Silversmith,Casey Schneider-Mizell, Chris S Jordan,Derrick Brittain, Akhilesh Halageri, Kai Kuehner, Oluwaseun Ogedengbe, Ryan Morey,Jay Gager, Krzysztof Kruk, Eric Perlman,Runzhe Yang, David Deutsch,Doug Bland, Marissa Sorek, Ran Lu,Thomas Macrina, Kisuk Lee,J Alexander Bae, Shang Mu,Barak Nehoran, Eric Mitchell,Sergiy Popovych, Jingpeng Wu, Zhen Jia,Manuel Castro, Nico Kemnitz,Dodam Ih, Alexander Shakeel Bates,Nils Eckstein, Jan Funke,Forrest Collman, Davi D Bock,Gregory S X E Jefferis, H Sebastian Seung,Mala Murthy, FlyWire Consortium

bioRxiv : the preprint server for biology(2023)

引用 23|浏览14
暂无评分
摘要
Connections between neurons can be mapped by acquiring and analyzing electron microscopic (EM) brain images. In recent years, this approach has been applied to chunks of brains to reconstruct local connectivity maps that are highly informative, yet inadequate for understanding brain function more globally. Here, we present the first neuronal wiring diagram of a whole adult brain, containing 5×107 chemical synapses between ~130,000 neurons reconstructed from a female Drosophila melanogaster. The resource also incorporates annotations of cell classes and types, nerves, hemilineages, and predictions of neurotransmitter identities. Data products are available by download, programmatic access, and interactive browsing and made interoperable with other fly data resources. We show how to derive a projectome, a map of projections between regions, from the connectome. We demonstrate the tracing of synaptic pathways and the analysis of information flow from inputs (sensory and ascending neurons) to outputs (motor, endocrine, and descending neurons), across both hemispheres, and between the central brain and the optic lobes. Tracing from a subset of photoreceptors all the way to descending motor pathways illustrates how structure can uncover putative circuit mechanisms underlying sensorimotor behaviors. The technologies and open ecosystem of the FlyWire Consortium set the stage for future large-scale connectome projects in other species.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要