Unraveling mechanisms behind reduced nitrate leaching with graphite nanomaterials addition with fertilizers in soil column experiments.

Chemosphere(2023)

引用 0|浏览7
暂无评分
摘要
Overuse or mistimed application of nitrogen fertilizer can cause nitrate contamination in groundwater and surrounding surface waters. Previous greenhouse studies have explored the use of graphene nanomaterials, including graphite nano additive (GNA), to reduce nitrate leaching in an agricultural soil while growing lettuce crops. To investigate the mechanism of GNA addition in suppressing nitrate leaching, we conducted soil column experiments using native agricultural soils under saturated or unsaturated flow conditions to simulate varied irrigation. We investigated the effects of temperature (4 °C compared with 20 °C) on microbial activity and dose effect of GNA was also explored (165 mg/kg soil and 1650 mg/kg soil) for biotic soil column experiments whereas a single temperature condition (20 °C) and GNA dose (165 mg/kg soil) was employed for abiotic (autoclaved) soil column experiments. Results showed GNA addition had minimal effects on nitrate leaching in saturated flow soil columns due to short hydraulic residence times (∼3.5 h). In comparison, longer residence times (∼3 d) in unsaturated soil columns reduced nitrate leaching by 25-31% relative to control soil columns without GNA addition. Furthermore, nitrate retention in the soil column was found to be suppressed at 4 °C compared with 20 °C, suggesting a bio-mediated mechanism for GNA addition to reduce nitrate leaching. In addition, the soil dissolved organic matter was found to be associated with nitrate leaching, where less nitrate leaching occurring when higher dissolved organic carbon (DOC) was measured in leachate water. Following studies of adding soil-derived organic carbon (SOC) resulted in greater nitrogen retention in the unsaturated soil columns only when GNA was present. Overall, the results suggest that GNA-amended soil reduces nitrate loss through increased N immobilization in the microbial biomass or loss of N in gaseous phase through enhanced nitrification and denitrification process.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要