Detection, distribution and environmental risk of metal-based nanoparticles in a coastal bay.

Water research(2023)

引用 4|浏览9
暂无评分
摘要
Metal-based nanoparticles (NPs) attract increasing concerns because of their adverse effects on aquatic ecosystems. However, their environmental concentrations and size distributions are largely unknown, especially in marine environments. In this work, environmental concentrations and risks of metal-based NPs were examined in Laizhou Bay (China) using single-particle inductively coupled plasma-mass spectrometry (sp-ICP-MS). First, separation and detection approaches of metal-based NPs were optimized for seawater and sediment samples with high recoveries of 96.7% and 76.3%, respectively. Spatial distribution results showed that Ti-based NPs had the highest average concentrations for all the 24 stations (seawater, 1.78 × 108 particles/L; sediments, 7.75 × 1012 particles/kg), followed by Zn-, Ag-, Cu-, and Au-based NPs. For all the NPs in seawater, the highest abundance occurred around the Yellow River Estuary, resulting from a huge input from Yellow River. In addition, the sizes of metal-based NPs were generally smaller in sediments than those in seawater (22, 20, 17, and 16 of 22 stations for Ag-, Cu-, Ti-, and Zn-based NPs, respectively). Based on the toxicological data of engineered NPs, predicted no-effect concentrations (PNECs) to marine species were calculated as Ag at 72.8 ng/L < ZnO at 2.66 µg/L < CuO at 7.83 µg/L < TiO2 at 72.0 µg/L, and the actual PNECs of the detected metal-based NPs may be higher due to the possible presence of natural NPs. Station 2 (around the Yellow River Estuary) was assessed as "high risk" for Ag- and Ti-based NPs with risk characterization ratio (RCR) values of 1.73 and 1.66, respectively. In addition, RCRtotal values for all the four metal-based NPs were calculated to fully assess the co-exposure environmental risk, with 1, 20, and 1 of 22 stations as "high risk", "medium risk", and "low risk", respectively. This study helps to better understand the risks of metal-based NPs in marine environments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要