Offline analysis of secondary formation markers in ambient organic aerosols by liquid chromatography coupled with time-of-flight mass spectrometry.

Journal of chromatography. A(2023)

引用 0|浏览4
暂无评分
摘要
The present study provides a comprehensive assessment of the quantitative analysis by high-performance liquid chromatography coupled with dual orthogonal electrospray ionization time-of-flight mass spectrometry (HPLC-ESI-TOF-MS) of pinene markers, biomass-burning related phenols, and other relevant carboxylic acids in atmospheric aerosol samples. Significant insights into the quantitative determination are offered on the basis of systematic experiments targeting the optimization of chromatographic separation, ionization source, and mass spectrometer performance. After testing three analytical columns, the best separation of the compounds of interest was achieved on a Poroshell 120 ECC18 column (4.6 × 50 mm, 2.7 µm) thermostated at 35 °C, operating in gradient elution mode with 0.1% acetic acid in water and acetonitrile at a 0.8 mL min flow rate. Optimal operational conditions for the ESI-TOF-MS instrument were identified as a 350 °C drying gas temperature, 13 L min drying gas flow rate, 60 psig nebulizer pressure, 3000 V for the ion transfer capillary, 60 V for the skimmer, and 150 V for the fragmentor. Additionally, the matrix effect on the ESI efficiency and the spike recovery factors of the compounds were tested. Method quantification limits can go as low as in the 0.88-48.0 μg L   (3.67-200 pg m   at 120 m of sampled air) range. The developed method was shown to be reliable for the quantification of the targeted compounds in real atmospheric aerosol samples. The accuracy in the molecular mass determination of less than 5 ppm and the acquisition in the full scan mode were shown to bring additional insights into the organic constituents in atmospheric aerosols.
更多
查看译文
关键词
ambient organic aerosols,mass spectrometry,liquid chromatography,time-of-flight
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要