Extracting the most discriminating functional connections in mild traumatic brain injury based on machine learning.

Neuroscience letters(2023)

引用 0|浏览3
暂无评分
摘要
BACKGROUND:Mild traumatic brain injury (mTBI) is characterized as brain microstructural damage, which may cause a wide range of brain functional disturbances and emotional problems. Brain network analysis based on machine learning is an important means of neuroimaging research. Obtaining the most discriminating functional connection is of great significance to analyze the pathological mechanism of mTBI. METHODS:To better obtain the most discriminating features of functional connection networks, this study proposes a hierarchical feature selection pipeline (HFSP) composed of Variance Filtering (VF), Lasso, and Principal Component Analysis (PCA). Ablation experiments indicate that each module plays a positive role in classification, validating the robustness and reliability of the HFSP. Furthermore, the HFSP is compared with recursive feature elimination (RFE), elastic net (EN), and locally linear embedding (LLE), verifying its superiority. In addition, this study also utilizes random forest (RF), SVM, Bayesian, linear discriminant analysis (LDA), and logistic regression (LR) as classifiers to evaluate the generalizability of HFSP. RESULTS:The results show that the indexes obtained from RF are the highest, with accuracy = 89.74%, precision = 91.26%, recall = 89.74%, and F1 score = 89.42%. The HFSP selects 25 pairs of the most discriminating functional connections, mainly distributed in the frontal lobe, occipital lobe, and cerebellum. Nine brain regions show the largest node degree. LIMITATIONS:The number of samples is small. This study only includes acute mTBI. CONCLUSIONS:The HFSP is a useful tool for extracting discriminating functional connections and may contribute to the diagnostic processes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要