Detecting whether L1 or other lumbar levels would be excluded from DXA bone mineral density analysis during opportunistic CT screening for osteoporosis using machine learning

International journal of computer assisted radiology and surgery(2023)

引用 0|浏览0
暂无评分
摘要
Purpose One or more vertebrae are sometimes excluded from dual-energy X-ray absorptiometry (DXA) analysis if the bone mineral density (BMD) T-score estimates are not consistent with the other lumbar vertebrae BMD T-score estimates. The goal of this study was to build a machine learning framework to identify which vertebrae would be excluded from DXA analysis based on the computed tomography (CT) attenuation of the vertebrae. Methods Retrospective review of 995 patients (69.0% female) aged 50 years or greater with CT scans of the abdomen/pelvis and DXA within 1 year of each other. Volumetric semi-automated segmentation of each vertebral body was performed using 3D-Slicer to obtain the CT attenuation of each vertebra. Radiomic features based on the CT attenuation of the lumbar vertebrae were created. The data were randomly split into training/validation (90%) and test datasets (10%). We used two multivariate machine learning models: a support vector machine (SVM) and a neural net (NN) to predict which vertebra(e) were excluded from DXA analysis. Results L1, L2, L3, and L4 were excluded from DXA in 8.7% (87/995), 9.9% (99/995), 32.3% (321/995), and 42.6% (424/995) patients, respectively. The SVM had a higher area under the curve (AUC = 0.803) than the NN (AUC = 0.589) for predicting whether L1 would be excluded from DXA analysis (P = 0.015) in the test dataset. The SVM was better than the NN for predicting whether L2 (AUC = 0.757 compared to AUC = 0.478), L3 (AUC = 0.699 compared to AUC = 0.555), or L4 (AUC = 0.751 compared to AUC = 0.639) were excluded from DXA analysis. Conclusions Machine learning algorithms could be used to identify which lumbar vertebrae would be excluded from DXA analysis and should not be used for opportunistic CT screening analysis. The SVM was better than the NN for identifying which lumbar vertebra should not be used for opportunistic CT screening analysis.
更多
查看译文
关键词
Computed tomography, Bone mineral density, Osteoporosis, Osteopenia, Opportunistic screening, L1 trabecular CT attenuation, Machine learning, Support vector machine, Neural network, Lumbar
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要