"Blocking-effect" detection strategy of clenbuterol by molecularly imprinted electrochemiluminescence sensor based on multiple synergistic excitation of AgNW luminophores signal with highly active BNQDs@AuNFs nanoscale co-reaction accelerator.

Biosensors & bioelectronics(2023)

引用 3|浏览4
暂无评分
摘要
A molecularly imprinted electrochemiluminescence sensor (MIECLS) is constructed to selectively detect clenbuterol (CLB) based on boron nitride quantum dots@gold nanoflowers/silver nanowires (BNQDs@AuNFs/AgNWs). The abundant amino and hydroxyl groups on the surface of the BNQDs generate an electrostatic self-assembly effect with the multi-tipped spatial structure of AuNFs, constituting a novel nanoscale co-reaction accelerator (NCRA) with high activity and large load capacity. An NCRA embedded in the network structure of the AgNW luminophores significantly promotes the reduction of peroxydisulfate (S2O82-) to sulfate anion radicals (SO4-•) through the catalysis of amino groups and boron radicals (B•) and the electron acceleration of AuNFs while also reducing the reaction distance between SO4-• and AgNWs-•, realizing the multiple synergistic amplification of the electrochemiluminescence (ECL) signal. Imprinted cavities in the molecularly imprinted polymers (MIPs) prepared by electropolymerization can generate a "blocking-effect" by recognizing CLB, realizing ECL signal quenching. Analytical results indicate that the established MIECLS detects CLB in a line concentration range of 0.5-50000 nM and detection limit of 0.00693 nM. The spiked recoveries are 85.90%-97.77%, with the relative standard deviations (RSD) under 5.1%, consistent with those of high-performance liquid chromatography (HPLC). This work demonstrates that an efficient NCRA can significantly enhance the output of the ECL signal in collaboration with the original luminophore, providing a new method to realize the ultra-detection of targeted substances by MIECLS.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要