Accelerated wound healing using three-dimensional amniotic membrane scaffold in combination with adipose-derived stem cells in a diabetic rat model.

Tissue & cell(2023)

引用 0|浏览12
暂无评分
摘要
The most important factors in the non-optimal healing of diabetic wounds are the lack of a suitable scaffold in the wound site for the migration and replacement of cells, as well as the lack of blood supply and effective growth factors in the wound site. Herein we investigated whether a bioengineered micro-porous three-dimensional decellularized amniotic membrane-scaffold (DAMS) in combination with adipose-derived stem cells (ASCs) could promote healing in ischemic wounds in diabetic type 1 rat. The diabetic animals were randomly divided into non-treated (untreated group), engraftment by DAMS (DAMS group), transplanted by ASCs (ASC group), and DAMS in combination with ASCs (DAMS+ASC group). Stereological, immunohistochemical, molecular, and tensiometrical assessments were performed on post-surgical days 7, 14, and 21. We found that the rate of wound closure, the volumes of new epidermis and dermis, the numerical density of fibroblasts and blood vessels, the numbers of proliferating cells and collagen deposition as well as biomechanical properties of the healed wounds were significantly higher in the treatment groups in comparison to the untreated group, and were the highest in DAMS+ASC ones. The transcripts for TGF-β and VEGF genes were significantly upregulated in all treatment regimens compared to the untreated group and were the highest for DAMS+ASC group. This is while expression of TNF-α and IL-1β as well as cell density of neutrophils decreased more significantly in DAMS+ASC group as compared with other groups. Overall, it was found that using both DAMS engraftment and ASC transplantation has more impact on diabetic wound healing.
更多
查看译文
关键词
Diabetic Wound, Wound healing, Amniotic Membrane, Three-dimensional scaffold, Adipose -derived stem cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要