Should We Even Optimize for Execution Energy? Rethinking Mapping for MAGIC Design Style

IEEE EMBEDDED SYSTEMS LETTERS(2023)

引用 0|浏览10
暂无评分
摘要
Memristor-based logic-in-memory (LiM) has become popular as a means to overcome the von Neumann bottleneck in traditional data-intensive computing. Recently, the memristor-aided logic (MAGIC) design style has gained immense traction for LiM due to its simplicity. However, understanding the energy distribution during the design of logic operations within the memristive memory is crucial in assessing such an implementation's significance. The current energy estimation methods rely on coarse-grained techniques, which underestimate the energy consumption of MAGIC-styled operations performed on a memristor crossbar. To address this issue, we analyze the energy breakdown in MAGIC operations and propose a solution that utilizes mapping from the SIMPLER MAGIC tool to achieve accurate energy estimation through SPICE simulations. In contrast to existing research that primarily focuses on optimizing execution energy, our findings reveal that the memristor's initialization energy in the MAGIC design style is, on average, 68 x higher. We demonstrate that this initialization energy significantly dominates the overall energy consumption. By highlighting this aspect, we aim to redirect the attention of designers toward developing algorithms and strategies that prioritize optimizations in initializations rather than execution for more effective energy savings.
更多
查看译文
关键词
Memristors,Logic gates,Estimation,Energy consumption,SPICE,Benchmark testing,Writing,Digital logic-in-memory(LiM),energy efficiency,memristors,memristor-aided logic (MAGIC)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要