Fast high-resolution metabolite mapping in the rat brain using 1H-FID-MRSI at 14.1T

arxiv(2023)

引用 0|浏览8
暂无评分
摘要
Magnetic resonance spectroscopic imaging (MRSI) enables the simultaneous non-invasive acquisition of MR spectra from multiple spatial locations inside the brain. While 1H-MRSI is increasingly used in the human brain, it is not yet widely applied in the preclinical settings, mostly because of difficulties specifically related to very small nominal voxel size in the rodent brain and low concentration of brain metabolites, resulting in low signal-to-noise ratio SNR. In this context, we implemented a free induction decay 1H-MRSI sequence (1H-FID-MRSI) in the rat brain at 14.1T. We combined the advantages of 1H-FID-MRSI with the ultra-high magnetic field to achieve higher SNR, coverage and spatial resolution in the rodent brain, and developed a custom dedicated processing pipeline with a graphical user interface: MRS4Brain toolbox. LCModel fit, using the simulated metabolite basis-set and in-vivo measured MM, provided reliable fits for the data at acquisition delays of 1.3 and 0.94 ms. The resulting Cramér-Rao lower bounds were sufficiently low (<30 eight metabolites of interest, leading to highly reproducible metabolic maps. Similar spectral quality and metabolic maps were obtained between 1 and 2 averages, with slightly better contrast and brain coverage due to increased SNR in the latter case. Furthermore, the obtained metabolic maps were accurate enough to confirm the previously known brain regional distribution of some metabolites. The acquisitions proved high reproducibility over time. We demonstrated that the increased SNR and spectral resolution at 14.1T can be translated into high spatial resolution in 1H-FID-MRSI of the rat brain in 13 minutes, using the sequence and processing pipeline described herein. High-resolution 1H-FID-MRSI at 14.1T provided reproducible and high-quality metabolic mapping of brain metabolites with significantly reduced technical limitations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要