Antimicrobial mechanisms of ZnO nanoparticles to phytopathogen Pseudomonas syringae: Damage of cell envelope, suppression of metabolism, biofilm and motility, and stimulation of stomatal immunity on host plant

Guangjin Fan, Qingli Xiao, Qian Li, Yinling Xia,Hui Feng,Xiaozhou Ma,Lin Cai,Xianchao Sun

Pesticide Biochemistry and Physiology(2023)

引用 1|浏览4
暂无评分
摘要
Nanoparticles have recently been employed as a new strategy to act as bactericides in agricultural applications. However, the effects and mechanisms of foliar deposition of nanoparticles on bacterial pathogens, plant physiology and particularly plant immunity have not been sufficiently understood. Here, we investigated the effects and mechanisms of ZnO NPs in controlling of tobacco wildfire caused by Pseudomonas syringae pv. tabaci, through the comprehensive analysis of biological changes of both bacteria and plants. The global gene expression changes of Pseudomonas syringae pv. tabaci supported that the functions of "protein secretion", "membrane part", "signal transducer activity", "locomotion", "chemotaxis" and "taxis" in bacteria, as well as the metabolic pathways of "bacterial chemotaxis", "two-component system", "biofilm formation", "ABC transporters" and "valine, leucine and isoleucine degradation" were significantly down-regulated by ZnO NPs. Correspondingly, we reconfirmed that the cell envelope structure, biofilm and motility of Pseudomonas syringae pv. tabaci were directly disrupted or suppressed by ZnO NPs. Different from completely killing Pseudomonas syringae pv. tabaci, ZnO NPs (0.5 mg/mL) potentially improved plant growth and immunity through enzymatic activity and global molecular response analysis. Furthermore, the changes of gene expression in ABA signaling pathway, ABA concentration and stomatal aperture all supported that ZnO NPs can specifically stimulate stomatal immunity, which is important to defend bacterial infection. Taken together, we proposed that both the inhibition or damage of motility, biofilm, metabolisms, virulence and cell envelope on P. syringae pv. tabaci, and the activation of the stomatal immunity formed two-layered antibacterial mechanisms of ZnO NPs on phytopathogenic bacteria.
更多
查看译文
关键词
Phytobacterial disease management,ZnO NPs,Toxic mechanism,Stomatal immunity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要