Mechanistic vision on polypropylene microplastics degradation by solar radiation using TiO2 nanoparticle as photocatalyst

Environmental Research(2023)

引用 0|浏览10
暂无评分
摘要
Microplastics are emerging contaminants owing to their occurrence and distribution in everywhere the ecosystem and leading to major environmental problems. Management methods are more suitable for larger-sized plastics. Here, the current study elucidates that, TiO2 photocatalyst under sunlight irradiation actively mitigates polypropylene microplastics (pH 3, 50 h) in an aqueous medium. End of post-photocatalytic experiments, the weight loss percentage of microplastics was 50.5 ± 0.5%. Fourier transforms infrared (FTIR) and nuclear magnetic resonance spectroscopy (1H NMR) spectroscopy results revealed the formation of peroxide and hydroperoxide ions, carbonyl, keto and ester groups at the end of the post-degradation process. Ultraviolet–Visible Diffuse Reflectance spectroscopic (UV – DRS) results showed variation in the optical absorbance of polypropylene microplastics peak values at 219 and 253 nm. Increased the weight percentage of oxygen level due to the oxidation of functional groups and decreased the weight percentage of carbon content in electron dispersive spectroscopy (EDS), probably owing to breakdown of long-chain polypropylene microplastics. In addition, scanning electron microscopy (SEM) microscopic analysis showed the surface having holes, cavities, and cracks on irritated polypropylene microplastics. The overall study and their mechanistic pathway strongly confirmed the formation of reactive oxygen species (ROS) with help of the movement of electrons by photocatalyst under solar irradiation which aids the degradation of polypropylene microplastics.
更多
查看译文
关键词
polypropylene microplastics degradation,photocatalyst,solar radiation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要