Structural, BET and EPR properties of mixed zinc-manganese spinel ferrites nanoparticles for energy storage applications

Ceramics International(2023)

引用 18|浏览0
暂无评分
摘要
X-ray diffraction data (XRD) validated the characteristic crystalline spinel cubic structure and a Field-emission scanning electron microscope/energy dispersive spectroscopy (FE-SEM/EDS) validated the proper stoichiometric element ratio of the prepared materials. By using X-ray photoelectron spectroscopy (XPS), the oxidation state of the elements in the prepared materials was verified. An electron paramagnetic resonance (EPR) spectrometer confirmed that Lande factor (g) values decreased as Zn2+ concentration in MnFe2O4 increased. The electrochemical (EC) characteristics of the materials were verified during production using a three electrode instrument. The EC performances confirm the EC behavior of the electrode materials. We investigated the EC properties of the electrodes using cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) methods. The Mn0.85Zn0.15Fe2O4 (code as: MZF1) electrode material has a specific capacitance (Cs) of 62.96 F/g compared to Mn0.75Zn0.25Fe2O4 (code as: MZF2) and Mn0.65Zn0.35Fe2O4 (code as: MZF3) electrode at a current density (CD) of 0.5 A/g. According to recent research, electrode materials should be made with the necessary form and size for great act supercapacitor (SC) applications.
更多
查看译文
关键词
Spinel ferrites,Cyclic voltammetry,Specific capacitance,Supercapacitor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要