p.E152K-STIM1 mutation deregulates Ca2+ signaling contributing to chronic pancreatitis

crossref(2020)

引用 0|浏览0
暂无评分
摘要
Since deregulation of intracellular Ca2+ can lead to intracellular trypsin activation and STIM1 (stromal interaction molecule-1) protein is the main regulator of Ca2+ homeostasis in pancreatic acinar cells, we explored the Ca2+ signaling in 37 STIM1 variants found in three pancreatitis patient cohorts. Extensive functional analysis of one particular variant, p.E152K, identified in three patients, provided a plausible link between dysregulated Ca2+ signaling within pancreatic acinar cells and chronic pancreatitis susceptibility. Specifically, p.E152K, located within the STIM1 EF-hand and sterile α-motif domain, increased the release of Ca2+ from the endoplasmic reticulum in patient-derived fibroblasts and transfected HEK293T cells. This event was mediated by altered STIM1-sarco/endoplasmic reticulum calcium transport ATPase (SERCA) interactions and enhanced SERCA pump activity leading to increased Store Operated Calcium Entry (SOCE). In the pancreatic AR42J cells expressing the p.E152K variant, Ca2+-signaling perturbations correlated with defects in trypsin activation and secretion, and increased cytotoxicity after cholecystokinin stimulation.Summary statementp.E152K-STIM1 variant found in pancreatitis patients leads to intracellular changes in calcium homeostasis through SERCA interaction, enabling intracellular trypsin activation and pancreatic acinar cell death.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要