The 2010 Haiti Earthquake Disaster: The ShakeMap that could have been...

crossref(2020)

引用 0|浏览0
暂无评分
摘要
<p>When an earthquake occurs, it is important to rapidly assess the severity of the consequences. The distribution of shaking intensity around the epicenter, known as the ShakeMap, is a key component in this process and is crucial for guiding first responders to the region. Whereas earthquake source characteristics, e.g., location and magnitude, can be rapidly determined using distant seismic stations, ground motion measurements from stations in the near-source region are needed to generate an adequate ShakeMap. When few or no seismometers exist in the region, ground motions are only estimated and the ShakeMap can be grossly inaccurate.</p><p>Besides seismic waves, earthquakes generate infrasound, i.e., inaudible acoustic waves in the atmosphere. Due to the low frequency nature of infrasound, and facilitated by waveguides in the atmosphere, signals propagate over long ranges with limited attenuation and are detected at ground-based stations. Here we show, that acousto-ShakeMaps, indicating the relative shaking intensity, can be rapidly generated using remotely detected infrasound. We illustrate this with infrasound from the 2010 Mw 7.0 Port-au-Prince, Haiti earthquake, detected in Bermuda, over 1700 km away from Haiti.</p><p>Such observations are made possible by: (1) An advanced array processing technique that enables the detection of coherent wavefronts, even when amplitudes are below the noise level, and (2) A backprojection technique that maps infrasound detections in time to their origin on the Earth's surface.</p><p>Infrasound measurements are conducted globally for the verification of the Comprehensive Nuclear-Test-Ban Treaty and together with regional infrasound networks allow for an unprecedented global coverage. This makes infrasound as an earthquake disaster mitigation technique feasible for the first time.</p>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要