Overlapping but separate number representations in the intraparietal sulcus—Probing format- and modality-independence in sighted Braille readers

Cortex(2023)

引用 0|浏览9
暂无评分
摘要
The Triple-Code Model stipulates that numerical information from different formats and modalities converges on a common magnitude representation in the Intraparietal Sulcus (IPS). To what extent the representations of all numerosity forms overlap remains unsolved. It has been postulated that the representation of symbolic numerosities (for example, Arabic digits) is sparser and grounded in an existing representation that codes for non-symbolic numerosity information (i.e., sets of objects). Other theories argue that numerical symbols represent a separate number category that emerges only during education. Here, we tested a unique group of sighted tactile Braille readers with numerosities 2, 4, 6 and 8 in three number notations: Arabic digits, sets of dots, tactile Braille numbers. Using univariate methods, we showed a consistent overlap in activations evoked by these three number notations. This result shows that all three used notations are represented in the IPS, which may suggest at least a partial overlap between the representations of the three notations used in this experiment. Using MVPA, we found that only non-automatized number information (Braille and sets of dots) allowed successful number classification. However, the numerosity of one notation could not be predicted above chance from the brain activation patterns evoked by another notation (no cross-classification). These results show that the IPS may host independent number codes in overlapping cortical circuits. In addition, they suggest that the level of training in encoding a given type of number information is an important factor that determines the amount of exploitable information and needs to be controlled for in order to identify the neural code underlying numerical information per se.
更多
查看译文
关键词
Sighted Braille readers,Intraparietal sulcus (IPS),fMRI,MVPA,Numerical cognition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要