Harnessing machine learning to unravel protein degradation inEscherichia coli

crossref(2020)

引用 0|浏览2
暂无评分
摘要
AbstractDegradation of intracellular proteins in Gram-negative bacteria regulates various cellular processes and serves as a quality control mechanism by eliminating damaged proteins. To understand what causes the proteolytic machinery of the cell to degrade some proteins while sparing others, we employed a quantitative pulsed-SILAC (Stable Isotope Labeling with Amino acids in Cell culture) method followed by mass spectrometry analysis to determine the half-lives for the proteome of exponentially growingEscherichia coli, under standard conditions. We developed a likelihood-based statistical test to find actively degraded proteins, and identified dozens of novel proteins that are fast-degrading. Finally, we used structural, physicochemical and protein-protein interaction network descriptors to train a machine-learning classifier to discriminate fast-degrading proteins from the rest of the proteome. Our combined computational-experimental approach provides means for proteomic-based discovery of fast degrading proteins in bacteria and the elucidation of the factors determining protein half-lives and have implications for protein engineering. Moreover, as rapidly degraded proteins may play an important role in pathogenesis, our findings could identify new potential antibacterial drug targets.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要