A high-throughput metabolic microarray assay reveals antibacterial effects of black and red raspberries and blackberries against Helicobacter pylori infection

bioRxiv (Cold Spring Harbor Laboratory)(2020)

引用 0|浏览1
暂无评分
摘要
AbstractHelicobacter pylori is an important bacterial pathogen that causes chronic infection of the human stomach, leading to gastritis, peptic ulcer disease and gastric cancer. Treatment with appropriate antibiotics can eliminate H. pylori infection and reduce the risk for severe disease outcomes. However, since H. pylori is becoming increasingly resistant to standard antibiotic regimens, novel treatment strategies are needed. Previous studies have demonstrated that black and red berries may have antibacterial properties. Therefore, we analyzed organic extracts and powders from black and red raspberries and blackberries and determined their antibacterial effects on multiple H. pylori strains. We used high-performance liquid chromatography to measure berry anthocyanins, which are considered the major active ingredients. To monitor antibiotic effects of the berry preparations on H. pylori, we developed a high-throughput metabolic growth assay based on the OmniLog™ system. All berry preparations tested had significant bactericidal effects in vitro, with MIC90 values ranging from 0.49 to 4.17%. We next used human gastric epithelial organoids to evaluate biocompatibility of the berry preparations and showed that black raspberry extract, which had the strongest antimicrobial activity, was non-toxic at the concentration required for complete bacterial growth inhibition. To determine whether dietary black raspberry application could eliminate H. pylori infection in vivo, mice were infected with H. pylori and then were placed on a diet containing 10% black raspberry powder. However, this treatment did not significantly impact bacterial infection rates or gastric pathology. In summary, our data indicate that black and red raspberry and blackberry products have potential applications in the treatment and prevention of H. pylori infection, because of their antibacterial effects and good biocompatibility. However, delivery and formulation of berry compounds needs to be optimized to achieve significant antibacterial effects in vivo.
更多
查看译文
关键词
blackberries,<i>helicobacter pylori</i>,red raspberries,antibacterial effects,high-throughput
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要