Observation of wave propagation in ice using stereo imaging in the Sea of Okhostk

crossref(2021)

引用 0|浏览0
暂无评分
摘要
<p>Sea ice seasonally covers the Sea of Okhotsk, a marginal Arctic basin nested between Russia and Japan, but its extent is predicted to decrease by 40% by 2050 leaving larger ice free areas over which waves can form. In the highly dynamical seasonal ice zone, i.e. where waves and ice interact, ice formation and breakup, and wave attenuation mutually affect each other via complex feedback mechanisms. To shed light into these interactions, wave measurements were conducted in the winter seasonal ice zone in the Southern Okhotsk Sea, North of Hokkaido, from onboard the P/V Soya using a stereo camera system. Data show that wave energy penetrates even in high ice concentration (>85%), where contemporary wave models predict complete attenuation of wind waves. Consistently with physical experiments and field observations of waves in the Arctic and Antarctic marginal ice zones, the measurements also show that the ice cover is more effective in attenuating short wave components and, consequently, the dominant wave period in ice is significantly increased compared to corresponding open ocean waves. The present data can inform calibration of wave models in the rapidly evolving seasonal ice zone in the Sea of Okhotsk.</p>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要