A model of naturalistic decision making in preference tests

bioRxiv (Cold Spring Harbor Laboratory)(2021)

引用 0|浏览0
AbstractDecisions as to whether to continue with an ongoing activity or to switch to an alternative are a constant in an animal’s natural world, and in particular underlie foraging behavior and performance in food preference tests. Stimuli experienced by the animal both impact the choice and are themselves impacted by the choice, in a dynamic back and forth. Here, we present model neural circuits, based on spiking neurons, in which the choice to switch away from ongoing behavior instantiates this back and forth, arising as a state transition in neural activity. We analyze two classes of circuit, which differ in whether state transitions result from a loss of hedonic input from the stimulus (an “entice to stay” model) or from aversive stimulus input (a “repel to leave” model). In both classes of model, we find that the mean time spent sampling a stimulus decreases with increasing value of the alternative stimulus, a fact that we linked to the inclusion of depressing synapses in our model. The competitive interaction is much greater in “entice to stay” model networks, which has qualitative features of the marginal value theorem, and thereby provides a framework for optimal foraging behavior. We offer suggestions as to how our models could be discriminatively tested through the analysis of electrophysiological and behavioral data.Author summaryMany decisions are of the ilk of whether to continue sampling a stimulus or to switch to an alternative, a key feature of foraging behavior. We produce two classes of model for such stay-switch decisions, which differ in how decisions to switch stimuli can arise. In an “entice-to-stay” model, a reduction in the necessary positive stimulus input causes switching decisions. In a “repel-to-leave” model, a rise in aversive stimulus input produces a switch decision. We find that in tasks where the sampling of one stimulus follows another, adaptive biological processes arising from a highly hedonic stimulus can reduce the time spent at the following stimulus, by up to ten-fold in the “entice-to-stay” models. Along with potentially observable behavioral differences that could distinguish the classes of networks, we also found signatures in neural activity, such as oscillation of neural firing rates and a rapid change in rates preceding the time of choice to leave a stimulus. In summary, our model findings lead to testable predictions and suggest a neural circuit-based framework for explaining foraging choices.
preference tests,naturalistic decision making,decision making
AI 理解论文
Chat Paper