Water-Quality Data Imputation With High Percentage of Missing Values: A Machine Learning Approach

Rafael Rodriguez, Marcos Pastorini,Lorena Etcheverry,Christian Chreties, Mónica Fossati,Alberto Castro,Angela Gorgoglione

crossref(2021)

引用 0|浏览1
暂无评分
摘要
The monitoring of surface-water quality followed by water-quality modeling and analysis is essential for generating effective strategies in water-resource management. However, worldwide, particularly in developing countries, water-quality studies are limited due to the lack of a complete and reliable dataset of surface-water-quality variables. In this context, several statistical and machine-learning models were assessed for imputing water-quality data at six monitoring stations located in the Santa Lucía Chico river (Uruguay), a mixed lotic and lentic river system. The challenge of this study is represented by the high percentage of missing data (between 50% and 70%) and the high temporal and spatial variability that characterizes the water-quality variables. The competing algorithms implemented belonged to both univariate and multivariate imputation methods (inverse distance weighting (IDW), Random Forest Regressor (RFR), Ridge (R), Bayesian Ridge (BR), AdaBoost (AB), Hubber Regressor (HR), Support Vector Regressor (SVR), and K-nearest neighbors Regressor (KNNR)). According to the results, more than 76% of the imputation outcomes are considered satisfactory (NSE > 0.45). The imputation performance shows better results at the monitoring stations located inside the reservoir than the ones positioned along the mainstream. IDW was the most chosen model for data imputation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要