Short Note on Comparing Stacking Modelling Versus Cannistraci-Hebb Adaptive Network Automata for Link Prediction in Complex Networks

crossref(2021)

引用 0|浏览2
暂无评分
摘要
Link prediction is an iconic problem in complex networks because deals with the ability to predict nonobserved existing or future parts of the network structure. The impact of this prediction on real applications can be disruptive: from prediction of covert links between terrorists in their social networks to repositioning of drugs in molecular diseasome networks. Here we compare: (1) an ensemble meta-learning method (Ghasemian et al.), which uses an artificial intelligence (AI) stacking strategy to create a single meta-model from hundreds of other models; (2) a structural predictability method (SPM, Lü et al.), which relies on a theory derived from quantum mechanics and does not assume any model; (3) a modelling rule named Cannistraci-Hebb (CH, Muscoloni et al.), which relies on one brain-bioinspired model adapting to the intrinsic network structure.We conclude that brute-force stacking of algorithms by AI does not perform better than (and is often significantly outperformed by) SPM and one simple brain-bioinspired rule such as CH. This agrees with the Gödel incompleteness: stacking is optimal but incomplete, you cannot squeeze out more than what is already in your features. Hence, we should also pursue AI that resembles human-like physical ‘understanding’ of simple generalized rules associated to complexity. The future might be populated by AI that ‘steals for us the fire from Gods’, towards machine intelligence that creates new rules rather than stacking the ones already known.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要