Recent Advances in Seed Coating Treatment Using Nanoparticles and Nanofibers for Enhanced Seed Germination and Protection

JOURNAL OF PLANT GROWTH REGULATION(2023)

引用 3|浏览4
暂无评分
摘要
Seed coating plays a crucial role in agriculture technology as a defence mechanism for crop protection and development. Conventional seed coating methods typically involve excessive material usage, high production costs and negatively impact human health and the environment. Orthodox approaches often require the use of bulk and hazardous substances, resulting in the inefficient delivery of active ingredients. Nanotechnology has emerged as a promising alternative with its small size, high surface area, and instantaneous reactivity leading to improved efficiency and reduced material usage. Recent studies have highlighted the use of nanomaterials, specifically nanoparticles and nanofibers which offer significant benefits in boosting the seed mechanical properties, germination and vigor index by enhancing seed water uptake, and nutrient absorption due to their permeability, small size and high surface area. Nanomaterials can provide better seed protection against biotic and abiotic stresses, including pests, diseases, and environmental factors such as drought and salinity. The controlled release of active ingredients from nanomaterials enhances plant development by ensuring the seeds receive the necessary nutrients over an extended period. Nanomaterials impregnated with biochemical agents, such as hormones and enzymes, can enhance the viability of these agents and improve crop growth by enabling a systematic release mechanism. This review provides an overview of the latest developments and understanding of how nanomaterials can be applied for seed coating purposes, including their mechanism of action and potential benefits. It is expected to provide valuable insights for researchers and practitioners in the field of agriculture and contribute to the development of sustainability.
更多
查看译文
关键词
Seed coating,Nanoparticles,Nanofibers,Electrospinning,Controlled-release delivery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要