A conductive catecholate-based framework coordinated with unsaturated bismuth boosts CO2 electroreduction to formate

CHEMICAL SCIENCE(2023)

引用 0|浏览2
暂无评分
摘要
Bismuth-based metal-organic frameworks (Bi-MOFs) have received attention in electrochemical CO2-to-formate conversion. However, the low conductivity and saturated coordination of Bi-MOFs usually lead to poor performance, which severely limits their widespread application. Herein, a conductive catecholate-based framework with Bi-enriched sites (HHTP, 2,3,6,7,10,11-hexahydroxytriphenylene) is constructed and the zigzagging corrugated topology of Bi-HHTP is first unraveled via single-crystal X-ray diffraction. Bi-HHTP possesses excellent electrical conductivity (1.65 S m(-1)) and unsaturated coordination Bi sites are confirmed by electron paramagnetic resonance spectroscopy. Bi-HHTP exhibited an outstanding performance for selective formate production of 95% with a maximum turnover frequency of 576 h(-1) in a flow cell, which surpassed most of the previously reported Bi-MOFs. Significantly, the structure of Bi-HHTP could be well maintained after catalysis. In situ attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirms that the key intermediate is *COOH species. Density functional theory (DFT) calculations reveal that the rate-determining step is *COOH species generation, which is consistent with the in situ ATR-FTIR results. DFT calculations confirmed that the unsaturated coordination Bi sites acted as active sites for electrochemical CO2-to-formate conversion. This work provides new insights into the rational design of conductive, stable, and active Bi-MOFs to improve their performance towards electrochemical CO2 reduction.
更多
查看译文
关键词
unsaturated bismuth boosts conductive,catecholate-based
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要