Di (2-ethyl) hexyl phthalate induces liver injury in chickens by regulating PTEN/PI3K/AKT signaling pathway via reactive oxygen species

Guangxing Li,Yang Chen, Menglin Wu, Kaiting Chen, Di Zhang,Ruili Zhang,Guijun Yang,Xiaodan Huang

Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology(2023)

引用 1|浏览3
暂无评分
摘要
Di (2-ethyl) hexyl phthalate (DEHP) is a common environmental endocrine disruptor that induces oxidative stress, posing a significant threat to human and animal health. Oxidative stress can activate the PTEN/PI3K/AKT pathway, which is closely related to cell apoptosis. However, it is unclear whether DEHP induces apoptosis of chicken liver cells by regulating the PTEN/PI3K/AKT pathway through oxidative stress. In this experiment, male laying hens were continuously exposed to 400 mg/kg, 800 mg/kg, and 1600 mg/kg DEHP for 14 d, 28 d, and 42 d. The results showed that liver injury was aggravated with the dose of DEHP gavage, and the ROS/MDA levels in L, M, and H DEHP exposure groups were significantly increased, while the T-AOC/T-SOD/GSH-PX levels were decreased. Meanwhile, DEHP exposure up-regulated the mRNA and protein expression levels of PTEN/Bax/Caspase-9/Caspase-3 and down-regulated the mRNA and protein expression levels of PI3K/AKT/BCL-2, indicating that DEHP may lead to hepatocyte apoptosis through ROS regulation of PTEN/PI3K/AKT axis. In order to further clarify the relationship between oxidative stress and liver injury, we treated chicken hepatocellular carcinoma cell line (LMH) with 2.5 mM N-acetylcysteine (NAC). NAC attenuated these phenomena. In summary, our study suggests that DEHP can induce apoptosis of chicken liver through ROS activation of the PTEN/PI3K/AKT axis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要