Learning and screening of neural networks architectures for sub-grid-scale parametrizations of sea-ice dynamics from idealised twin experiments

Tobias Finn, Charlotte Durand,Alban Farchi,Marc Bocquet,Yumeng Chen,Alberto Carrassi, Veronique Dansereau

crossref(2022)

引用 0|浏览0
暂无评分
摘要
<p>In this talk, we propose to use neural networks in a hybrid modelling setup to learn sub-grid-scale dynamics of sea-ice that cannot be resolved by geophysical models. The multifractal and stochastic nature of the sea-ice dynamics create significant obstacles to represent such dynamics with neural networks. Here, we will introduce and screen specific neural network architectures that might be suited for this kind of task. To prove our concept, we perform idealised twin experiments in a simplified Maxwell-Elasto-Brittle sea-ice model which includes only sea-ice dynamics within a channel-like setup. In our experiments, we use high-resolution runs as proxy for the reality, and we train neural networks to correct errors of low-resolution forecast runs.</p><p>Since we perform the two kind of runs on different grids, we need to define a projection operator from high- to low-resolution. In practice, we compare the low-resolution forecasted state at a given time to the projected state of the high resolution run at the same time. Using a catalogue of these forecasted and projected states, we will learn and screen different neural network architectures with supervised training in an offline learning setting. Together with this simplified training, the screening helps us to select appropriate architectures for the representation of multifractality and stochasticity within the sea-ice dynamics. As a next step, these screened architectures have to be scaled to larger and more complex sea-ice models like neXtSIM.</p>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要