Importance of non-stationary analysis for assessing extreme sea levels under sea level rise

crossref(2022)

引用 0|浏览2
暂无评分
摘要
Abstract. Coastal flooding caused by extreme sea levels (ESLs) is one of the major impacts related to the climate change. It is expected to increase in the future due to sea level rise and storm surge intensification. Estimates of return levels obtained under the framework provided by extreme events theory might be biased under climatic non-stationarity. Additional uncertainty is related to the choice of the model. In this work, we fit several extreme values models to a long-term (96 years) sea level record from the city of Venice (NW Adriatic Sea, Italy): a Generalized Extreme Value distribution (GEV), a Generalized Pareto Distribution (GPD), a Point Process (PP), and the Joint Probability Method (JPM) under different detrending strategies. We model non-stationarity with a linear dependence of the model’s parameters from the mean sea level. Our results show that non-stationary GEV and PP models fit the data better than stationary models even with detrended data. The non-stationary PP model is able to reproduce the rate of extremes occurrence fairly well. Actualized estimates of the return levels for non-stationary models are generally higher than estimates from stationary models. Thus, projections of return levels in the future might be significantly different from those calculated using stationary models. Overall, we show that non-stationary extremes analyses can provide more robust estimates of return levels to be used in coastal protection planning.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要