Coordinating Multiple Resources for Optimal Postdisaster Operation of Interdependent Electric Power and Natural Gas Distribution Systems

CoRR(2023)

引用 0|浏览1
暂无评分
摘要
Electric power and natural gas systems are not separated but rather are increasingly connected physically and functionally interdependent due to the continuing development of natural gas-fired generation and gas industry electrification. Such interdependency makes these two systems interact with each other when responding to disasters. The aggravated risk of cascading failures across the two systems has been exposed in recent energy crises, highlighting the significance of preparing these interdependent systems against disasters and helping their impacted services quickly recover. This promotes us to treat power and gas systems as one whole to fully capture their interactive behaviors. In this paper, we focus on the interdependent electric power and natural gas distribution systems (IENDS) and propose a "supply - demand - repair" strategy to comprehensively help the IENDS tide over the emergency periods after disasters by coordinating mobile or stationary emergency resources for various uses. Specifically, 1) on the supply side, the fuel supply issue of different types of generators for emergency use is considered and the fuel delivery process among different fuel facilities is mathematically formulated; 2) on the demand side, a zonewise method is proposed for integrated dispatch of power and gas demand responses; and 3) in the repair process, a varying efficiency related to the repair units at work is introduced to accurately model repairs. The proposed strategy is formulated into a mixed-integer second-order cone programming model to obtain a globally optimal decision of deploying all of those resources in a coordinated and organized manner. A series of case studies based on test systems are conducted to validate the effectiveness of the proposed strategy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要