Topological zero modes and edge symmetries of metastable Markovian bosonic systems

PHYSICAL REVIEW B(2023)

引用 0|浏览3
暂无评分
摘要
Tight bosonic analogs of free-fermionic symmetry-protected topological phases, and their associated edgelocalized excitations, have long evaded the grasp of condensed-matter and AMO physics. In this paper, building on our initial exploration [Phys. Rev. Lett. 127, 245701 (2021)], we identify a broad class of quadratic bosonic systems subject to Markovian dissipation that realize tight bosonic analogs of the Majorana and Dirac edge modes characteristic of topological superconductors and insulators, respectively. To this end, we establish a general framework for topological metastability for these systems, by leveraging pseudospectral theory as the appropriate mathematical tool for capturing the nonnormality of the Lindbladian generator. The resulting dynamical paradigm, which is characterized by both a sharp separation between transient and asymptotic dynamics and a nontrivial topological invariant, is shown to host edge-localized modes, which we dub Majorana and Dirac bosons. Generically, such modes consist of one conserved mode and a canonically conjugate generator of an approximate phase-space translation symmetry of the dynamics. The general theory is exemplified through several representative models exhibiting the full range of exotic boundary physics that topologically metastable systems can engender. In particular, we explore the extent to which Noether's theorem is violated in this dissipative setting and the way in which certain symmetries can nontrivially modify the edge modes. Notably, we also demonstrate the possibility of anomalous parity dynamics for a bosonic cat state prepared in a topologically metastable system, whereby an equal distribution between even and odd parity sectors is sustained over a long transient. For both Majorana and Dirac bosons, observable multitime signatures in the form of anomalously long-lived quantum correlations and divergent zero-frequency power spectral peaks are proposed and discussed in detail. Our results point to a paradigm for symmetry-protected topological physics in free bosons, embedded deeply in the long-lived transient regimes of metastable dynamics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要