Iterated Piecewise Affine (IPA) Approximation for Language Modeling

Davood Shamsi, Wen-yu Hua,Brian Williams

CoRR(2023)

引用 0|浏览6
暂无评分
摘要
In this work, we demonstrate the application of a simple first-order Taylor expansion to approximate a generic function $F: R^{n \times m} \to R^{n \times m}$ and utilize it in language modeling. To enhance the basic Taylor expansion, we introduce iteration and piecewise modeling, leading us to name the algorithm the Iterative Piecewise Affine (IPA) approximation. The final algorithm exhibits interesting resemblances to the Transformers decoder architecture. By comparing parameter arrangements in IPA and Transformers, we observe a strikingly similar performance, with IPA outperforming Transformers by 1.5\% in the next token prediction task with cross-entropy loss for smaller sequence lengths.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要