Flow-3d

Proceedings of the 28th Asia and South Pacific Design Automation Conference(2023)

引用 0|浏览3
暂无评分
摘要
The emergence of data-intensive applications has spurred the interest for in-memory computing using nanoscale crossbars. Flow-based in-memory computing is a promising approach for evaluating Boolean logic using the natural flow of electrical currents. While automated synthesis approaches have been developed for 2D crossbars, 3D crossbars have advantageous properties in terms of density, area, and performance. In this paper, we propose the first framework for performing flow-based computing using 3D crossbars. The framework, FLOW-3D, automatically synthesizes a Boolean function into a crossbar design. FLOW-3D is based on an analogy between BDDs and crossbars, resulting in the synthesis of 3D crossbar designs with minimal semiperimeter. A BDD with n nodes is mapped to a 3D crossbar with (n + k) metal wires. The k extra metal wires are needed to handle hardware-imposed constraints. Compared with the state-of-the-art synthesis tool for 2D crossbars, FLOW-3D improves semiperimeter, area, energy consumption, and latency up to 61%, 84%, 37%, and 41% on 15 Revlib benchmarks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要