Structural dynamics of proteins explored via time-resolved x-ray liquidography

Chemical Physics Reviews(2022)

引用 2|浏览7
暂无评分
摘要
The structure of a protein is closely related to its biological function. In this regard, structural changes, as well as static structures, have been scrutinized as essential elements in understanding and controlling the function of a protein. In particular, the structural change in the solution phase needs to be elucidated to properly understand protein functions under physiological conditions. Time-resolved x-ray liquidography (TRXL), also known as time-resolved x-ray solution scattering, has attracted attention as a powerful experimental method for studying the structural dynamics of proteins in the solution phase. Initially, TRXL was used to study the structural dynamics of small molecules in the solution phase, and later, its application was extended to probe the structural changes in proteins. Via TRXL, structural changes ranging from large quaternary movements to subtle rearrangements of the tertiary structures have been successfully elucidated. In this review, we introduce various studies using TRXL to investigate the structural dynamics of proteins. These include early TRXL studies on model systems, those on photoreceptor proteins, and recent studies using stimuli beyond the direct photoexcitation of proteins. (C) 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)
更多
查看译文
关键词
proteins,structural dynamics,time-resolved,x-ray
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要