Gaps in network infrastructure limit our understanding of biogenic methane emissions

crossref(2023)

引用 0|浏览1
暂无评分
摘要
<p>Understanding the biogenic sources and sinks of methane (CH<sub>4</sub>) is critical to both predicting and mitigating future climate change. Methane is 28-34 times more effective at trapping heat in the atmosphere compared to an equivalent mass of carbon dioxide over a 100-year time frame and accounts for &#8764; 42&#8201;% of warming since the pre-industrial period. Biogenic sources are likely responsible for driving dramatic increases in atmospheric CH<sub>4</sub> over the past decade, yet these are the least constrained and most uncertain fluxes in the global methane budget. A lack of long-term measurements across a variety of ecosystems has resulted in many unanswered questions about both the processes driving methane fluxes and how to scale these fluxes across space and over time. There is an urgent need to address these questions. With an atmospheric residence time of ~9 years, mitigating CH<sub>4</sub> emissions has the potential to be an important global warming mitigation strategy. Here, we show how the current infrastructure to measure CH<sub>4</sub> limits our ability to constrain the natural biogenic CH<sub>4</sub> flux.<strong> </strong>Using dissimilarity, multidimensional scaling, and cluster analysis, the United States of America was divided into 10 clusters distributed across temperature and precipitation gradients. Through our analysis using climate, land cover, and location variables, we identified priority areas for research infrastructure to provide a more complete understanding of the CH<sub>4</sub> flux potential of ecosystem types. <strong> </strong></p>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要