Topological tailoring-induced Dirac cone in ultrathin niobium diboride nanosheets for electrocatalytic sulfur reduction reaction

Materials Today Physics(2023)

引用 4|浏览15
暂无评分
摘要
Two-dimensional topological Dirac materials with novel electronic structures have attracted increasing attention in materials science, where the Weyl fermions can emerge in topological insulating multilayers with unusual quantum transport properties. However, their practical catalytic performance is seldom reported. Here, we design ultrathin niobium diboride (NbB2) nanosheets by utilizing topological electronic states to power catalytic activity. In the lithium-sulfur batteries, the stable topological surface states of NbB2 with high carrier mobility are a recipe for high-activity catalysts to spur the sluggish electrocatalytic sulfur reduction reaction, which originates from the Dirac cone electronic structure. Most remarkably, it delivers stable capacities with 1500 cycles under the 3.6 mA/cm2 (3 C), which is far superior to most electrode catalysts. The proposed functional Weyl and/or Dirac materials would have broad applications in other related fields such as the hydrogen evo-lution reaction, nitrogen reduction reaction, and energy conversion.
更多
查看译文
关键词
Dirac materials, Weyl fermions, d -band center, Catalytic reaction, Lithium sulfur battery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要