Joint Precoding and Array Design for Broadcast in the Internet of Unmanned Aerial Vehicles

IEEE Internet of Things Journal(2023)

引用 0|浏览8
暂无评分
摘要
To promote energy and spectrum efficient communications in multiantenna channels, broadcast can provide a substantial gain in system throughput. However, the hardware constraints and strong Line of Sight (LoS) limit the implementation and performance of multiantenna broadcast in the Internet of unmanned aerial vehicles (UAVs). Based on the pseudo-Doppler principle, we propose a joint precoding and antenna array design to reduce the number of radio frequency (RF) chains required by the broadcast and free the LoS path from the interstream interference. The reduction of RF chains is realized by designing the precoding matrix that makes at least one of the transmit antennas have null inputs during any broadcast and, moreover, the LoS path is formed to match the obtained precoding matrix through antenna array design at the broadcasting UAV. The algorithms with low computational complexity for optimizing this design are developed to minimize the transmit power within the UAV broadcast paradigms. Theoretical formulation and numerical results in the metrics of sum data rate and bit error rate substantiate the validity of our proposed design, specifically in the Internet of UAVs with strong LoS.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络