Simultaneous Optimization of 20 Key Parameters of the Integrated Forecasting System of ECMWF Using OpenIFS: Part I (Effect on Deterministic Forecasts)

Monthly Weather Review(2023)

引用 0|浏览2
暂无评分
摘要
Abstract Numerical weather prediction models contain parameters that are inherently uncertain and cannot be determined exactly. It is thus desirable to have reliable objective approaches for estimation of optimal values and uncertainties of these parameters. Traditionally, the parameter tuning has been done manually, which can lead the tuning process being a maze of subjective choices. In this paper we present how to optimize 20 key physical parameters in the atmospheric model Open Integrated Forecasting System which have strong impact on forecast quality. The results show that simultaneous optimization of O(20) parameters is possible with O(100) algorithm steps using an ensemble of O(20) members, and that the optimized parameters lead to substantial enhancement of predictive skill. The enhanced predictive skill can be attributed to reduced biases in low-level winds and upper-tropospheric humidity in the optimized model. We find that the optimization process is dependent on the starting values of the parameters that are optimized (starting from better suited values results in a better model). The results show also that the applicability of the tuned parameter values across different model resolutions is somewhat limited due to resolution-dependent model biases, and that the parameter covariances provided by the tuning algorithm seem to be uninformative.
更多
查看译文
关键词
Forecast verification, skill, Ensembles, Model evaluation, performance, Optimization, Parameterization, Automated systems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要