Co-design of Human-centered, Explainable AI for Clinical Decision Support

ACM Transactions on Interactive Intelligent Systems(2023)

Cited 1|Views55
No score
Abstract
eXplainable AI (XAI) involves two intertwined but separate challenges: the development of techniques to extract explanations from black-box AI models and the way such explanations are presented to users, i.e., the explanation user interface. Despite its importance, the second aspect has received limited attention so far in the literature. Effective AI explanation interfaces are fundamental for allowing human decision-makers to take advantage and oversee high-risk AI systems effectively. Following an iterative design approach, we present the first cycle of prototyping-testing-redesigning of an explainable AI technique and its explanation user interface for clinical Decision Support Systems (DSS). We first present an XAI technique that meets the technical requirements of the healthcare domain: sequential, ontology-linked patient data, and multi-label classification tasks. We demonstrate its applicability to explain a clinical DSS, and we design a first prototype of an explanation user interface. Next, we test such a prototype with healthcare providers and collect their feedback with a two-fold outcome: First, we obtain evidence that explanations increase users’ trust in the XAI system, and second, we obtain useful insights on the perceived deficiencies of their interaction with the system, so we can re-design a better, more human-centered explanation interface.
More
Translated text
Key words
Explainable artificial intelligence,clinical decision support systems,human-computer interaction,user study
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined