Forbidden dark matter annihilation into leptons with full collision terms

Journal of Cosmology and Astroparticle Physics(2023)

引用 0|浏览4
暂无评分
摘要
The standard approach of calculating the relic density of thermally produced dark matter based on the assumption of kinetic equilibrium is known to fail for forbidden dark matter models since only the high momentum tail of the dark matter phase space distribution function contributes significantly to dark matter annihilations. Furthermore, it is known that the computationally less expensive Fokker-Planck approximation for the collision term describing elastic scattering processes between non-relativistic dark matter particles and the Standard Model thermal bath breaks down if both scattering partners are close in mass. This, however, is the defining feature of the forbidden dark matter paradigm. In this paper, we therefore include the full elastic collision term in the full momentum-dependent Boltzmann equation as well as in a set of fluid equations that couple the evolution of the number density and dark matter temperature for a simplified model featuring forbidden dark matter annihilations into muon or tau leptons through a scalar mediator. On the technical side, we perform all angular integrals in the full collision term analytically and take into account the effect of dark matter self-interactions on the relic density. The overall phenomenological outcome is that the updated relic density calculation results in a significant reduction of the experimentally allowed parameter space compared to the traditional approach, which solves only for the abundance. In addition, almost the entire currently viable parameter space can be probed with CMB-S4, next-generation beam-dump experiments or at a future high-luminosity electron-position collider, except for the resonant region where the mediator corresponds to approximately twice the muon or tau mass.
更多
查看译文
关键词
dark matter annihilation,leptons
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要