Cellulose based polyurethane with amino acid functionality: Design, synthesis, computational study and application in wastewater purification

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES(2023)

引用 2|浏览3
暂无评分
摘要
Contamination in water is due to various environmental pollutants from natural and anthropogen activities. To remove toxic metals from contaminated water, we developed a novel adsorbent in foam form based on an olive industry waste material. The foam synthesis involved oxidation of cellulose extracted from the waste to dialdehyde, functionalization of the cellulose dialdehyde with an amino acid group, reacting the functionalized cellulose with hexamethylene diisocyanate and p-phenylene diisocyanate to produce the target polyurethanes Cell-F-HMDIC and Cell-F-PDIC, respectively. The optimum condition for lead(II) adsorption by Cell-F-HMDIC and Cell-F-PDIC were determined. The foams show the ability to quantitatively remove most of metal ions present in a real sample of sewage. The kinetic and thermodynamic studies confirmed a spontaneous metal ion binding to the foams with a second pseudo-order adsorption rate. The adsorption study revealed it obeys the Langmuir isotherm model. The experimental Qe values of both foams Cell-F-PDIC and Cell-F-HMDIC were 2.1929 and 2.0345 mg/g, respectively. Monte Carlo (MC) and Dynamic (MD) and simulations showed excellent affinity of both foams for lead ions with high adsorption negative energy value indicating vigorous interactions of Pb(II) with the adsorbent surface. The results indicate the usefulness of the developed foam in commercial applications.
更多
查看译文
关键词
Foam,Cellulose,Olive waste biomass,Wastewater,Toxic metal ions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要