Inelastic mean-free path and mean escape depth of 10-140 eV electrons in SiO2 nanoparticles determined by Si 2p photoelectron yields

E. Antonsson, F. Gerke, B. Langer, C. Goroncy, T. Dresch,T. Leisner,C. Graf, E. Ruehl

PHYSICAL CHEMISTRY CHEMICAL PHYSICS(2023)

引用 0|浏览2
暂无评分
摘要
We report on photoelectron spectra of SiO2 nanoparticles (d = 157 +/- 6 nm) above the Si 2p threshold in the photon energy range 118-248 eV with electron kinetic energy 10-140 eV and analyze the photoelectron yield as a function of photon energy. Comparison of the experimental results with Monte-Carlo simulations on electron transport allows us to quantify the inelastic mean-free path and mean escape depth of photoelectrons in the nanoparticle samples. The influence of the nanoparticle geometry and electron elastic scattering on photoelectron yields is highlighted. The results show that the previously proposed direct proportionality of the photoelectron signal to the inelastic mean-free path or the mean escape depth does not hold for photoelectron kinetic energies below 30 eV due to the strong influence of electron elastic scattering. The present results deviate for photoelectron kinetic energies below 30 eV from the previously proposed direct proportionality of the photoelectron signal to the inelastic mean-free path or the mean escape depth, which is the result of a strong influence of electron elastic scattering. The presented inelastic mean-free paths and mean escape depths appear to be useful for the quantitative interpretation of photoemission experiments on nanoparticles and for modeling of the experimental results.
更多
查看译文
关键词
sio2 2p photoelectron yields,electrons,nanoparticles,mean-free escape depth
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要