Amplification of Cerenkov Luminescence Using Semiconducting Polymers for Cancer Theranostics

ADVANCED FUNCTIONAL MATERIALS(2023)

引用 4|浏览8
暂无评分
摘要
The therapeutic efficacy of photodynamic therapy is limited by the ability of light to penetrate tissues. Due to this limitation, Cerenkov luminescence (CL) from radionuclides has recently been proposed as an alternative light source in a strategy referred to as Cerenkov radiation-induced therapy (CRIT). Semiconducting polymer nanoparticles (SPNs) have ideal optical properties, such as large absorption cross-sections and broad absorbance, which can be utilized to harness the relatively weak CL produced by radionuclides. SPNs can be doped with photosensitizers and have approximate to 100% energy transfer efficiency by multiple energy transfer mechanisms. Herein, an optimized photosensitizer-doped SPN is investigated as a nanosystem to harness and amplify CL for cancer theranostics. It is found that semiconducting polymers significantly amplify CL energy transfer efficiency. Bimodal positron emission tomography (PET) and optical imaging studies show high tumor uptake and retention of the optimized SPNs when administered intravenously or intratumorally. Lastly, it is found that photosensitizer-doped SPNs have excellent potential as a cancer theranostics nanosystem in an in vivo tumor therapy study. This study shows that SPNs are ideally suited to harness and amplify CL for cancer theranostics, which may provide a significant advancement for CRIT that are unabated by tissue penetration limits.
更多
查看译文
关键词
cerenkov luminescence,cancer theranostics,polymers,amplification
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要